Phosphene induction by microstimulation of macaque V1

Brain Res Rev. 2007 Feb;53(2):337-43. doi: 10.1016/j.brainresrev.2006.11.001. Epub 2006 Dec 14.

Abstract

Non-human primates are being used to develop a cortical visual prosthesis for the blind. We use the properties of electrical microstimulation of striate cortex (area V1) of macaque monkeys to make inferences about phosphene induction. Our analysis is based on well-established properties of V1: retino-cortical magnification factor, receptive-field size, and the characteristics of hypercolumns. We argue that phosphene size is dependent on the amount of current delivered to V1 and on the retino-cortical magnification factor. We suggest that to improve the correspondence between the site of stimulation within V1 and the visual field location of an elicited phosphene both eyes must be put under experimental control given that phosphene location is retinocentric and given that the vergence angle between the eyes might affect the position of a phosphene in depth. Knowing how electrical microstimulation interacts with cortical tissue to evoke percepts in behaving macaque monkeys is fundamental to the establishment of an effective cortical visual prosthesis for the blind.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Electric Stimulation / methods*
  • Eye Movements
  • Macaca / anatomy & histology*
  • Phosphenes / radiation effects*
  • Visual Cortex / radiation effects*
  • Visual Fields