Previous studies suggest reduced hepatic endothelial nitric oxide synthase activity contributes to increased intrahepatic resistance. Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, undergoes hepatic metabolism via dimethylarginine-dimethylamino-hydrolase, and is derived by the action of protein-arginine-methyltransferases. Our study assessed whether ADMA, and its stereo-isomer symmetric dimethylarginine (SDMA), are increased in alcoholic hepatitis patients, and determined any relationship with severity of portal hypertension (hepatic venous pressure gradient measurement) and outcome. Fifty-two patients with decompensated alcoholic cirrhosis were studied, 27 with acute alcoholic hepatitis and cirrhosis, in whom hepatic venous pressure gradient was higher (P = 0.001) than cirrhosis alone, and correlated with ADMA measurement. Plasma ADMA and SDMA were significantly higher in alcoholic hepatitis patients and in nonsurvivors. Dimethylarginine-dimethylamino-hydrolase protein expression was reduced and protein-arginine-methyltransferase-1 increased in alcoholic hepatitis livers. ADMA, SDMA and their combined sum, which we termed a dimethylarginine score, were better predictors of outcome compared with Pugh score, MELD and Maddrey's discriminant-function.
Conclusion: Alcoholic hepatitis patients have higher portal pressures associated with increased ADMA, which may result from both decreased breakdown (decreased hepatic dimethylarginine-dimethylamino-hydrolase) and/or increased production. Elevated dimethylarginines may serve as important biological markers of deleterious outcome in alcoholic hepatitis.