Upregulation of Na+/Ca2+ exchanger contributes to the enhanced Ca2+ entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension

Am J Physiol Cell Physiol. 2007 Jun;292(6):C2297-305. doi: 10.1152/ajpcell.00383.2006. Epub 2006 Dec 27.

Abstract

A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary artery smooth muscle cells (PASMC) is a trigger for pulmonary vasoconstriction and a stimulus for PASMC proliferation and migration. Multiple mechanisms are involved in regulating [Ca(2+)](cyt) in human PASMC. The resting [Ca(2+)](cyt) and Ca(2+) entry are both increased in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH), which is believed to be a critical mechanism for sustained pulmonary vasoconstriction and excessive pulmonary vascular remodeling in these patients. Here we report that protein expression of NCX1, an NCX family member of Na(+)/Ca(2+) exchanger proteins is upregulated in PASMC from IPAH patients compared with PASMC from normal subjects and patients with other cardiopulmonary diseases. The Na(+)/Ca(2+) exchanger operates in a forward (Ca(2+) exit) and reverse (Ca(2+) entry) mode. By activating the reverse mode of Na(+)/Ca(2+) exchange, removal of extracellular Na(+) caused a rapid increase in [Ca(2+)](cyt), which was significantly enhanced in IPAH PASMC compared with normal PASMC. Furthermore, passive depletion of intracellular Ca(2+) stores using cyclopiazonic acid (10 microM) not only caused a rise in [Ca(2+)](cyt) due to Ca(2+) influx through store-operated Ca(2+) channels but also mediated a rise in [Ca(2+)](cyt) via the reverse mode of Na(+)/Ca(2+) exchange. The upregulated NCX1 in IPAH PASMC led to an enhanced Ca(2+) entry via the reverse mode of Na(+)/Ca(2+) exchange, but did not accelerate Ca(2+) extrusion via the forward mode of Na(+)/Ca(2+) exchange. These observations indicate that the upregulated NCX1 and enhanced Ca(2+) entry via the reverse mode of Na(+)/Ca(2+) exchange are an additional mechanism responsible for the elevated [Ca(2+)](cyt) in PASMC from IPAH patients.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calcium / metabolism*
  • Cells, Cultured
  • Gene Expression Regulation
  • Humans
  • Hypertension, Pulmonary / metabolism*
  • Kinetics
  • Myocytes, Smooth Muscle / cytology
  • Myocytes, Smooth Muscle / metabolism*
  • Pulmonary Artery / cytology*
  • Sodium / metabolism
  • Sodium-Calcium Exchanger / metabolism*
  • Up-Regulation*

Substances

  • Sodium-Calcium Exchanger
  • Sodium
  • Calcium