It remains an open question as to whether experiments involving collision-induced dissociation (CID) can provide a viable approach for monitoring spatially resolved deuteration levels in electrosprayed polypeptide ions. A number of laboratories reported the successful application of CID following solution-phase H/D exchange (HDX), whereas others found that H/D scrambling precluded site-specific measurements. The aim of the current work is to help clarify the general feasibility of HDX-CID methods, using a 22-residue zinc-bound protein domain (Zn-ZBD) as model system. Metal binding in Zn-ZBD should confer structural rigidity, and the presence of several basic residues should sequester mobile charge carriers in the gas phase. Both of these factors were expected to suppress the extent of scrambling. HDX was carried out by employing rapid on-line mixing, thereby mimicking conditions typically encountered in kinetic pulse-labeling studies. Quadrupole time-of-flight MS/MS of pulse-labeled Zn-ZBD provides high sequence coverage. However, the measured fragment deuteration levels do not correlate with the known H-bonding pattern of Zn-ZBD, suggesting the occurrence of extensive scrambling. Instead of showing a uniform distribution, the fragment ions reveal a distinct nonrandom pattern of deuteration levels. In the absence of prior information, these data could erroneously be ascribed to the presence of protected sites. However, the observed patterns clearly originate from other factors; possibly they are caused by modulations of the amide CID efficiency by kinetic isotope effects. It is concluded that scrambling does not represent the only conceptual problem in HDX-CID studies and that control experiments on uniformly labeled samples are essential for ruling out interpretation artifacts.