The purpose of the present study was to investigate the opposite effect of the pre- and postsynaptic serotonin-1A (5-HT(1A)) receptors on the psychotic-like behavior induced by a non-competitive antagonist of the NMDA receptor, dizocilpine (MK-801). Male Wistar rats received two doses (0.025mg/kg and 1mg/kg) of 5-HT(1A) receptor agonist 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino) tetralin) and/or MK-801 in two different doses, 0.1mg/kg or 0.3mg/kg. We measured sensorimotor gating by testing prepulse inhibition of acoustic startle response (PPI) and locomotor activity of rats. We found an opposite effect of the low and high 5-HT(1A) receptor agonist doses on MK-801 induced deficit in PPI and hyperlocomotion in habituated rats. The low dose of 8-OH-DPAT, which preferentially acts on presynaptic 5-HT(1A) receptors, restored the deficit in PPI and hyperlocomotion in MK-801 (0.1mg/kg)-treated habituated rats. However, the high dose of 8-OH-DPAT, which activates both pre- and postsynaptic 5-HT(1A) receptors, decreased PPI and increased locomotor activity after administration of the low dose of MK-801. Administration of 8-OH-DPAT itself dose-dependently decreased PPI. However, only the high dose of 8-OH-DPAT increased spontaneous locomotor activity of rats. Our results indicate that there is an interaction between the NMDA and 5-HT(1A) receptors. In addition, these findings could indicate that activation of the 5-HT(1A) autoreceptor could be effective as a treatment in schizophrenia, but full potent agonism of the receptor could worsen the psychotic symptoms.