Imatinib is the first molecular targeted therapy that has shown clinical success, but imatinib acquired resistance, although a rare event, is critical during the therapy of chronic myelogenous leukaemia (CML). With the aim of better understanding the molecular mechanisms accompanying acquisition of resistance to this drug, a comparative proteomic approach was undertaken on CML cell lines LAMA 84 S (imatinib sensitive) and LAMA 84 R (imatinib resistant). Forty-four differentially expressed proteins were identified and categorized into five main functional classes: (I) heat shock proteins and chaperones; (II) nucleic acid interacting proteins (binding/synthesis/stability); (III) structural proteins, (IV) cell signaling, and (V) metabolic enzymes. Several heat shock proteins known to complex Bcr-Abl were overexpressed in imatinib resistant cells, showing a possible involvement of these proteins in the mechanism of resistance. HnRNPs also resulted in being up-regulated in imatinib resistant cells. These proteins have been shown to be strongly and directly related to Bcr-Abl activity. To our knowledge, this is the first direct proteomic comparison of imatinib sensitive/resistant CML cell lines.