Mutant mitochondrial DNA with large-scale deletions (delta-mtDNA) has been frequently observed in patients with chronic progressive external ophthalmoplegia (CPEO), a subgroup of the mitochondrial encephalomyopathies. To exclude involvement of the nuclear genome in expression of the mitochondrial dysfunction characteristic of CPEO, we introduced the mtDNA of a CPEO patient into clonal mtDNA-less HeLa cells and isolated cybrid clones. Quantitation of delta-mtDNA in the cybrids revealed that delta-mtDNA was selectively propagated with higher levels of delta-mtDNA correlating with slower cellular growth rate. In these cybrid clones, translational complementation of the missing tRNAs occurred only when delta-mtDNA was less than 60% of the total mtDNA, whereas accumulation of delta-mtDNA to greater than 60% resulted in progressive inhibition of overall mitochondrial translation as well as reduction of cytochrome c oxidase activity throughout the organelle population. Because these cybrids shared the same nuclear background as HeLa cells, these results suggest that large-scale deletion mutations of mtDNA alone are sufficient for the mitochondrial dysfunction characteristic of CPEO.