Lipid droplets are accumulations of neutral lipids surrounded by a monolayer of phospholipids and associated proteins. Recent proteomic analysis of isolated droplets suggests that they are part of a dynamic organelle system that is involved in membrane traffic as well as packaging and distributing lipids in the cell. To gain a better insight into the function of droplets, we used a combination of mass spectrometry and NMR spectroscopy to characterize the lipid composition of this compartment. In addition to cholesteryl esters and triacylglycerols with mixed fatty acid composition, we found that approximately 10-20% of the neutral lipids were the ether lipid monoalk(en)yl diacylglycerol. Although lipid droplets contain only 1-2% phospholipids by weight, >160 molecular species were identified and quantified. Phosphatidylcholine (PC) was the most abundant class, followed by phosphatidylethanolamine (PE), phosphatidylinositol, and ether-linked phosphatidylcholine (ePC). Relative to total membrane, droplet phospholipids were enriched in lysoPE, lysoPC, and PC but deficient in sphingomyelin, phosphatidylserine, and phosphatidic acid. These results suggest that droplets play a central role in ether lipid metabolism and intracellular lipid traffic.