In view of the cardioprotective effect of high-density lipoproteins (HDL) and the limited effects of statin and fibrate therapy on HDL cholesterol, it is clinically relevant to test whether pharmacological treatment aimed at raising HDL lowers cardiovascular risk. Cholesteryl ester transfer protein (CETP) is a new therapeutic target, because the cholesteryl ester transfer process lowers HDL cholesterol and contributes to an atherogenic lipoprotein profile, particularly when plasma triglycerides are high. Clinical evidence suggests that coronary artery calcification as well as intima media thickness is positively related to plasma cholesteryl ester transfer, and that high plasma CETP concentration is associated with increased cardiovascular risk in hypertriglyceridaemia. However, CETP could also have anti-atherogenic potential, since it provides a potentially beneficial route for delivery of HDL-derived cholesteryl esters to the liver. In addition, CETP could also favourably stimulate peripheral cell cholesterol removal and enhance hepatic cholesterol uptake. Recent evidence suggests that a high CETP level may confer lower cardiovascular risk in the context of low triglycerides. At maximal doses, the CETP inhibitors JTT-705 and torcetrapib elicit a marked rise in HDL cholesterol of up to 34% and 91-106%, respectively. The effectiveness of these drugs on (intermediate) clinical outcome measures is currently being tested in large-scale phase III clinical trials, with torcetrapib being only evaluated in combination therapy with atorvastatin. When and how to use CETP inhibitors, e.g. in combination with a statin or a fibrate, is a major challenge. We propose that low HDL cholesterol in the context of high triglycerides, such as found in type 2 diabetes mellitus, could become an important indication area for this new class of drugs.