Sperm-sexing has been used to produce embryos and offspring of a pre-determined sex in a number of species. However, the fertility of sex-sorted sperm is reduced and the full effects of sperm-sexing remain to be elucidated. The purpose of the present study was to investigate the potential effects of sex-sorted sperm on mRNA expression patterns of developmentally important genes employing in vitro produced bovine embryos. Bovine embryos were produced in vitro with unsorted and sex-sorted sperm and mRNA expression patterns were determined for glucose-3 transporter (Glut-3), glucose-6-phosphate dehydrogenase (G6PD), X-inactive specific transcript (X-ist) and Heat shock protein 70.1 (Hsp) using semi-quantitative endpoint reverse transcriptase-PCR in male and female, day-7 and 8 embryos. The relative abundance (RA) of Glut-3 was higher for day-7 male than female embryos, and day-7 embryos derived from unsorted compared with sex-sorted sperm. The RA of G6PD was higher for embryos derived from unsorted than sex-sorted sperm, and for day-8 female compared with male embryos. The RA of Xist was higher for female than male embryos, and for day-7 female embryos derived from unsorted than sex-sorted sperm. Hsp RA was higher for female compared with male embryos, was similar for day-7 and 8 embryos, and unsorted and sex-sorted sperm derived embryos. These results demonstrate differential expression of developmentally important genes between male and female embryos, and embryos derived from unsorted and sex-sorted sperm.