A 2-beam model is used to simulate precession electron diffraction (PED) intensities. It is shown that this model can be inverted with minimal knowledge of the underlying crystal structure, permitting structure factor amplitudes to be deduced directly from measured intensities within the 2-beam approximation. This approach may be used in conjunction with direct methods to obtain correct, kinematically interpretable structure indications for data sets from relatively thin crystals (less than approximately 400A), and an experimental example based on (Ga,In)(2)SnO(5) is presented. The failure of this approach at large thickness is illustrated by an additional data set for MFI zeolite. The 2-beam approximation provides a simple model for PED intensities, and inversion using this model shows advantages over a kinematical approximation. It is however too rough approximation to be of general use and ultimately it is to be hoped that more accurate models with similar ease of use can be derived to treat PED data.