The development of safe, novel adjuvants is necessary to maximize the efficacy of new and/or available vaccines. Chitosan is a non-toxic, biocompatible, biodegradable, natural polysaccharide derived from the exoskeletons of crustaceans and insects. Chitosan's biodegradability, immunological activity and high viscosity make it an excellent candidate as a depot/adjuvant for parenteral vaccination. To this end, we explored chitosan solution as an adjuvant for subcutaneous vaccination of mice with a model protein antigen. We found that chitosan enhanced antigen-specific antibody titers over five-fold and antigen-specific splenic CD4+ proliferation over six-fold. Strong increases in antibody titers together with robust delayed-type hypersensitivity (DTH) responses revealed that chitosan induced both humoral and cell-mediated immune responses. When compared with traditional vaccine adjuvants, chitosan was equipotent to incomplete Freund's adjuvant (IFA) and superior to aluminum hydroxide. Mechanistic studies revealed that chitosan exhibited at least two characteristics that may allow it to function as an immune adjuvant. First, the viscous chitosan solution created an antigen depot. More specifically, less than 9% of a protein antigen, when delivered in saline, remained at the injection site after 8 h. However, more than 60% of a protein antigen delivered in chitosan remained at the injection site for 7 days. Second, chitosan induced a transient 67% cellular expansion in draining lymph nodes. The expansion peaked between 14 and 21 days after chitosan injection and diminished as the polysaccharide was degraded. These mechanistic studies, taken together with the enhancement of a vaccine response, demonstrate that chitosan is a promising and safe platform for parenteral vaccine delivery.