The prion protein (PrP) is the key protein implicated in transmissible spongiform encephalopathies. It is a metalloprotein that binds manganese and copper. The latter is involved in the physiological function of the protein. We have previously found that PrP expression in Pichia pastoris affects intracellular metal ion concentrations and that formation of protease-resistant PrP is induced by additional copper and/or manganese. In this study, we show that heterologously expressed PrP is post-translationally modified and transported to the cell wall. We found by combining three different test systems that PrP itself had gained superoxide dismutase-like activity in P. pastoris. However, this activity could not be inhibited by KCN and depended on additional copper in the medium. Thus, this study defines the conditions under which PrP exhibits superoxide dismutase-like activity by showing that copper must be present for the protein to participate in scavenging and detoxification of reactive oxygen species.