Adiposity profile in the dwarf rat: an unusually lean model of profound growth hormone deficiency

Am J Physiol Endocrinol Metab. 2007 May;292(5):E1483-94. doi: 10.1152/ajpendo.00417.2006. Epub 2007 Jan 30.

Abstract

This study describes the previously uncharacterized ontogeny and regulation of truncal adipose reserves in the profoundly GH-deficient dwarf (dw/dw) rat. We show that, despite normal proportionate food intake, dw/dw rats develop abdominal leanness and hypoleptinemia (circulating leptin halved in dw/dw males, P < 0.05) during puberty. This contrasts with the hyperleptinemia seen in moderately GH-deficient Tgr rats (circulating leptin doubled at 6 wk of age, P < 0.05) and in GH receptor-binding protein (GHR/BP)-null mice (circulating leptin doubled; P < 0.05). This lean/hypoleptinemic phenotype was not completely normalized by GH treatment, but dw/dw rats developed abdominal obesity in response to neonatal MSG treatment or maintenance on a high-fat diet. Unlike Tgr rats, dw/dw rats did not become obese with age; plasma leptin levels and fat pad weights became similar to those in wild-type rats. In contrast with truncal leanness, tibial marrow adiposity was normal in male and doubled in female dwarves (P < 0.01), this increase being attributable to increased adipocyte number (P < 0.01). Neonatal MSG treatment and high-fat feeding elevated marrow adiposity in dw/dw rats by inducing adipocyte enlargement (P < 0.05). These results demonstrate that, despite lipolytic influence of GH, severe GH deficiency in dw/dw rats is accompanied by a paradoxical leanness. This lean/hypoleptinemic phenotype is not solely attributable to reduced GH signaling and does not appear to result from a reduction in nutrient intake or the ability of dw/dw adipocytes to accumulate lipid. Disruption of preadipocyte differentiation or adipocyte proliferation in the dw/dw rat may lead to the development of this unusually lean/hypoleptinemic phenotype.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abdominal Fat / metabolism*
  • Animals
  • Animals, Genetically Modified
  • Body Weight / physiology
  • Cohort Studies
  • Dwarfism, Pituitary / metabolism*
  • Eating
  • Female
  • Food Additives / pharmacology
  • Insulin-Like Growth Factor I / metabolism*
  • Leptin / blood
  • Leptin / metabolism*
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Rats
  • Sodium Glutamate / pharmacology
  • Tibia / physiology

Substances

  • Food Additives
  • Leptin
  • Insulin-Like Growth Factor I
  • Sodium Glutamate