Accuracy of circular contact area measurements with thin-film pressure sensors

J Biomech. 2007;40(11):2569-72. doi: 10.1016/j.jbiomech.2006.12.002. Epub 2007 Jan 31.

Abstract

Contact area is often used to characterize the biomechanical properties of joints, especially in testing of injury and joint replacement. Several methods have been developed to measure contact area, including piezo-resistive thin-film arrays. The purpose of this study was to determine the accuracy with which one of these systems (Tekscan, Inc., South Boston, MA) could measure the contact area of flat-ended circular indenters of varying known sizes. Static loads ranging from 1000 to 7000 N were applied to four flat, circular indenters (1140, 2027, 3167, and 4560 mm(2)) and the contact areas were recorded with Tekscan 5076 sensor. Similar testing was carried out on a 4000 sensor. I-scan software (Tekscan Inc., South Boston, MA) was used to analyze the Tekscan-recorded area measurements. The Tekscan data were also post-processed to filter out sensel signal intensity values that were at least two standard deviations from the average sensel signal intensity values of the sensor matrix. Unprocessed Tekscan measurements with the 5076 sensor had area percent errors ranging from 5% to 27%. The filtering algorithm reduced most errors to less than 1%. Similar trends of improved accuracy with post-filtering were found with the 4000 sensor. While this method of thresholding out the sensels with the lowest signal intensity values may not work for all surfaces and indenter shapes, it provides a new approach to improve the accuracy of contact area measurements collected with the Tekscan system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Pressure*
  • Reproducibility of Results
  • Research Design / standards*
  • Weight-Bearing