Objective: The genetic background of familial combined hyperlipidemia (FCHL) has not been fully clarified. Because several nuclear receptors play pivotal roles in lipid metabolism, we tested the hypothesis that genetic variants of nuclear receptors contribute to FCHL.
Methods and results: We screened all the coding regions of the PPARalpha, PPARgamma2, PPARdelta, FXR, LXRalpha, and RXRgamma genes in 180 hyperlipidemic patients including 60 FCHL probands. Clinical characteristics of the identified variants were evaluated in other 175 patients suspected of coronary disease. We identified PPARalpha Asp140Asn and Gly395Glu, PPARgamma2 Pro12Ala, RXRgamma Gly14Ser, and FXR -1g->t variants. Only RXRgamma Ser14 was more frequent in FCHL (15%, P<0.05) than in other primary hyperlipidemia (4%) and in controls (5%). Among patients suspected of coronary disease, we identified 9 RXRgamma Ser14 carriers, who showed increased triglycerides (1.62+/-0.82 versus 1.91+/-0.42 [mean+/-SD] mmol/L, P<0.05), decreased HDL-cholesterol (1.32+/-0.41 versus 1.04+/-0.26, P<0.05), and decreased post-heparin plasma lipoprotein lipase protein levels (222+/-85 versus 149+/-38 ng/mL, P<0.01). In vitro, RXRgamma Ser14 showed significantly stronger repression of the lipoprotein lipase promoter than RXRgamma Gly14.
Conclusion: These findings suggest that RXRgamma contributes to the genetic background of FCHL.