Despite its central role in cell survival and proliferation, the transcriptional program controlled by GSK-3 is poorly understood. We have employed a systems level approach to characterize gene regulation downstream of PI 3-kinase/Akt/GSK-3 signaling in response to growth factor stimulation of quiescent cells. Of 31 immediate-early genes whose induction was dependent on PI 3-kinase signaling, 12 were induced directly by inhibition of GSK-3. Most of the GSK-3-regulated genes encoded transcription factors, growth factors, and signaling molecules. Binding sites for CREB were highly over-represented in the upstream regions of these genes, with 9 genes containing CREB sites that were conserved in mouse orthologs. Binding sites predicted in 6 genes were confirmed by CREB chromatin immunoprecipitation and forskolin induction of CBP binding. Moreover, CREB siRNA substantially blocked induction of 5 genes by forskolin and of 3 genes following inhibition of GSK-3. These results indicate that GSK-3 actively represses gene expression in quiescent cells, with inhibition of CREB playing a key role in this transcriptional response.