Integral membrane proteins have central roles in a vast number of vital cellular processes. A structural feature that most membrane proteins have in common is the presence of one or more alpha-helices with which they traverse the lipid bilayer. Because of the interaction with the surrounding lipids, the organization of these transmembrane helices will be sensitive to lipid properties like lateral packing, hydrophobic thickness, and headgroup charge. The helices may adapt to the lipids in different ways, which in turn can influence the structure and function of the intact membrane protein. In this review, we will focus on how the lipid environment influences two specific properties of transmembrane segments: their lateral association and their tilt with respect to the bilayer normal.