Methods for noninvasive imaging of electrical function of the heart seem to become a clinical standard procedure the next years. Thus, the overall procedure has to meet clinical requirements as easy and fast application. In this study we propose a new electrode array meeting clinical requirements such as easy to apply and compatibility with routine leads. Within body surface regions of high sensitivity, identified in a prior, information content based study, the number of required electrodes was optimized using effort-gain plots. These plots were generated by applying a so called type one detector criterion. The optimal array was selected from a set of 12 electrode arrays. Each of them consists of two L-shaped regular spaced parts. The optimal array was found by comparing several layouts and electrode densities to the electrode array we use for clinical studies. It consists of 125 electrodes with a regular spacing between 2cm and 3cm.