Adiponectin and, especially, its oligomeric complex composition have been suggested to be critical in determining insulin sensitivity. Pro-inflammatory cytokines play an important role in the development of insulin resistance in obesity and associated diseases. Therefore, we investigated the effect of long-term exposure of tumour necrosis factor (TNF)-alpha, interleukin (IL)-6, IL-1beta, and interferon (IFN)-gamma on total insulin-sensitizing adiponectin secretion and adiponectin complex formation from human adipocytes. In parallel, adipocyte delipidation and leptin production levels were monitored. The present study demonstrates that TNF-alpha, IL-1beta, and IFN-gamma dose and time dependently suppressed total adiponectin secretion within 7 days (60, 70, and 35% reduction respectively). IL-6 was also able to reduce (50%) adiponectin production, although only in combination with exogenous soluble IL-6 receptors (sIL-6R). However, the oligomeric distribution (high, middle, and low molecular weight (HMW) complexes) of secreted adiponectin was not altered by any of these cytokines. All studied pro-inflammatory cytokines resulted in delipidation and reduction of lipid-laden adipocyte numbers. Despite this reduction of lipid-laden adipocytes, TNF-alpha, IL-6/sIL-6R, and IL-1beta stimulated leptin release. Our data indicate that (i) long-term pro-inflammatory cytokine exposure downregulates total adiponectin secretion from delipidizing adipocytes and (ii) pro-inflammatory cytokines are not important regulators of adipocyte-derived adiponectin oligomerization. Hence, their individual contribution to low expression of HMW adiponectin found in insulin-resistant conditions seems unlikely. Furthermore, delipidizing adipocytes and preadipocytes are active leptin producers when stimulated by TNF-alpha, IL-6/sIL-6R, and IL-1beta.