A computer simulation study of the formation of liquid crystal nanodroplets from a homogeneous solution

J Chem Phys. 2007 Jan 28;126(4):044905. doi: 10.1063/1.2430710.

Abstract

The aggregation of liquid crystal nanodroplets from a homogeneous solution is an important but not well understood step in the preparation of various advanced photonic materials. Here, the authors performed molecular dynamics computer simulations of the formation of liquid crystalline nanodroplets, starting from an isotropic and uniform binary solution of spherical Lennard-Jones (solvent) and elongated ellipsoidal Gay-Berne (solute) rigid particles in low (<10%) concentration. They studied the dynamics of demixing and the mesogen ordering process and characterized the resulting nanodroplets assessing the effect of temperature, composition, and specific solute-solvent interaction on the morphology, structure, and anisotropy. They find that the specific solute-solvent interaction, composition, and temperature can be adjusted to tune the nanodroplet growth and size.