Adenomatous polyposis coli (APC) protein is a large tumor suppressor that is truncated in most colorectal cancers. The carboxyl-terminal third of APC protein mediates direct interactions with microtubules and the microtubule plus-end tracking protein EB1. In addition, APC has been localized to actin-rich regions of cells, but the mechanism and functional significance of this localization have remained unclear. Here we show that purified carboxyl-terminal basic domain of human APC protein (APC-basic) bound directly to and bundled actin filaments and associated with actin stress fibers in microinjected cells. Actin filaments and microtubules competed for binding to APC-basic, but APC-basic also could cross-link actin filaments and microtubules at specific concentrations, suggesting a possible role in cytoskeletal cross-talk. APC interactions with actin in vitro were inhibited by its ligand EB1, and co-microinjection of EB1 prevented APC association with stress fibers. Point mutations in EB1 that disrupted APC binding relieved the inhibition in vitro and restored APC localization to stress fibers in vivo, demonstrating that EB1-APC regulation is direct. Because tumor formation and metastasis involve coordinated changes in the actin and microtubule cytoskeletons, this novel function for APC and its regulation by EB1 may have direct implications for understanding the molecular basis of tumor suppression.