Expression of GTPase-deficient Gi2 alpha subunit (alpha i2) mutant polypeptides and overexpression of the wild-type alpha i2 polypeptide in Rat 1a, Swiss 3T3, and NIH 3T3 fibroblasts altered normal growth regulation and induced a loss of contact inhibition. In Rat 1a cells (but not in NIH 3T3 or Swiss 3T3 cells), expression of the GTPase-deficient alpha i2 mutant polypeptides allowed colony formation in soft agar, which correlated with a loss in anchorage dependence and a decreased serum requirement. The altered growth regulatory properties of Rat 1a cells induced by expression of alpha i2 mutant polypeptides was not significantly inhibited by cotransfection with a dominant negative Ha-ras mutant polypeptide (Asn-17rasH), indicating that the activated Gi2 membrane signal transduction protein is uniquely capable of altering the regulation of Rat 1a cell growth by a predominantly c-ras-independent mechanism. The results show that GTPase-deficient alpha i2 mutant polypeptides have the properties of an oncogene that can induce the phenotypic characteristics of transformation in Rat 1a cells but that only a subset of these changes is observed with NIH 3T3 and Swiss 3T3 cells.