We use the statistics of photon emission from single molecules to probe the ultrafast dynamics of an unfolded protein via Förster resonance energy transfer. Global reconfiguration of the chain occurs on a time scale of approximately equal to 50 ns and slows down concomitant with chain collapse under folding conditions. These diffusive dynamics provide a missing link between the phenomenological chemical kinetics commonly used in protein folding and a physical description in terms of quantitative free energy surfaces. The experiments demonstrate the potential of single-molecule methods in accessing the biologically important nanosecond time scales even in heterogeneous populations.