Summary The macrolide antibiotics are now well known to have anti-inflammatory effects. Because dendritic cells (DCs) orchestrate immune responses, we examined the in vitro effects of clarithromycin (CAM), azithromycin (AZM) and midecamycin (MDM) on the expression of co-stimulatory molecules and production of cytokines [interleukin (IL)-10, IL-6, interferon (IFN)-gamma, IL-12p40, tumour necrosis factor (TNF)-alpha] of murine bone marrow-derived DCs by lipopolysaccharide (LPS) stimulation. A 15-membered macrolide, AZM, and a 14-membered macrolide, CAM, significantly enhanced the intensity of a co-stimulatory molecule, CD80, on DCs but not CD86 and CD40. AZM significantly increased the production of IL-10 and CAM significantly inhibited the production of IL-6 by DCs. However, a 16-membered macrolide, MDM, did not have any significant effect on these surface markers and cytokine productions. Moreover, AZM increased IL-10 and CAM decreased IL-2 productions significantly, when naive T cells derived from spleen were co-cultured with DCs treated in advance with LPS and these macrolides. These findings suggest that 14-membered and 15-membered, but not 16-membered macrolides play as anti-inflammatory agents, at least in part, through modulating the functions of DCs. However, each macrolide affects them in different ways.