Myocardial blood flow and oxygen consumption are heterogeneously distributed. Perfusion and myocardial oxygen consumption are closely correlated in the normal heart. It is unknown how this metabolism-perfusion relation is influenced by sympathetic denervation. We investigated this question in seven chloralose-anaesthetized dogs, 3-4 weeks after regional sympathetic denervation of the left circumflex coronary artery area of supply of the left ventricle. Measurements were made of local myocardial blood flow (MBF, in ml min(-1) (g dry wt)(-1)), measured with microspheres, and myocardial oxygen consumption ( , in mumol min(-1) (g dry wt)(-1)) in the same location, calculated from the (13)C spectrum of tissue extracts after intracoronary infusion of 3-(13)C-lactate. Since both innervated and denervated regions are subject to the same arterial pressure, lower blood flow indicates higher resistance. Mean MBF was 5.56 ml min(-1) (g dry wt)(-1) (heterogeneity of 3.47 ml min(-1) (g dry wt)(-1)) innervated, 7.48 ml min(-1) (g dry wt)(-1) (heterogeneity of 3.62 ml min(-1) (g dry wt)(-1)) denervated (n.s.). Significant linear relations were found between MBF and M Vo2 of individual samples within the innervated and denervated regions. The slopes of these relations were not significantly different, but the adjusted mean was significantly higher in the denervated regions (+1.92 ml min(-1) (g dry wt)(-1), an increase of 38% of the mean MBF at the pooled mean M Vo2, P = 0.028, ANCOVA). The ratio MBF/M Vo2(in ml micromol(-1)) was significantly higher, being 0.296 +/- 0.167 ml micromol(-1) in the denervated region compared with the innervated region, 0.216 +/- 0.126 ml micromol(-1), P = 0.0182, Mann-Whitney U test. These results indicate that sympathetic tone under chloralose anaesthesia imposes a moderate vasoconstrictive effect in the myocardium that is not detected by comparison of the mean blood flow or resistance.