The mechanism of N-acetyl-p-benzoquinone imine (NAPQI)-induced release of Ca2+ from rat liver mitochondria was investigated. The addition of NAPQI or 3,5-Me2-NAPQI (a dimethylated analogue of NAPQI with only oxidizing properties) to mitochondria resulted in the rapid and extensive oxidation of NADH and NADPH. High-performance liquid chromatographic analysis of mitochondrial pyridine nucleotides revealed that the formation of NAD+ and NADP+ was followed by a time-dependent net loss of total pyridine nucleotides as a result of their hydrolysis, with the formation of nicotinamide. Preincubation of the mitochondria with cyclosporin A completely prevented the quinone imine-stimulated release of sequestered Ca2+ from mitochondria. Cyclosporin A did not affect the ability of NAPQI or 3,5-Me2-NAPQI to oxidize NAD(P)H but prevented the quinone imine-induced hydrolysis of the pyridine nucleotides. Although there was no detectable change in total protein-bound ADP-ribose content during quinone imine-induced Ca2+ release from mitochondria, meta-iodobenzylguanidine, a competitive inhibitor of protein mono(ADP-ribosylation), prevented Ca2+ release by NAPQI and 3,5-Me2-NAPQI; meta-iodobenzylguanidine did not inhibit the quinone imine-induced NAD(P)H oxidation and only partially blocked hydrolysis of the oxidized pyridine nucleotides. It is concluded that NAPQI causes the oxidation of mitochondrial NADH and NADPH, and stimulates Ca2+ release as a result of the further hydrolysis of the oxidized pyridine nucleotides and protein mono(ADP-ribosylation).