The aim of this study was to investigate the skin immunopathology of gene gun-delivered plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) and hence explore the possible mechanisms of its adjuvant activity. Using sheep as the experimental model, expressible pGM-CSF was administered to the epidermis and the dermal/epidermal junction and its effects on the skin were assessed by histopathology, immunohistology and quantitative RT-PCR for a range of pro-inflammatory and immune response-polarizing cytokines. Both functional and non-functional plasmids caused an acute inflammatory response with the infiltration of neutrophils and micro-abscess formation; however, the response to pGM-CSF was more severe and was also associated with the accumulation of eosinophils, immature (CD1b(-)/CD172a(-)) dendritic cells and B cells. In terms of cytokine expression, an early TNF-alpha response was stimulated by gene gun delivery of plasmid-associated gold beads, which coincided with an immediate infiltration of neutrophils. However, only pGM-CSF triggered the short-lived expression of GM-CSF (peaking at 4 h) and significant long-term increases in both TNF-alpha and IL-1beta. pGM-CSF did not affect the expression of the immune response-polarizing cytokines, IL-10 and IL-12.