A three-dimensional model of the chemokine receptor CCR5 has been built to fulfill structural peculiarities of its alpha-helix bundle and to distinguish known CCR5 antagonists from randomly chosen drug-like decoys. In silico screening of a library of 1.6 million commercially available compounds against the CCR5 model by sequential filters (drug-likeness, 2-D pharmacophore, 3-D docking, scaffold clustering) yielded a hit list of 59 compounds, out of which 10 exhibited a detectable binding affinity to the CCR5 receptor. Unexpectedly, most binders tested in a functional assay were shown to be agonists of the CCR5 receptor. A follow-up database query based on similarity to the most potent binders identified three new CCR5 agonists. Despite a moderate affinity of all nonpeptide ligands for the CCR5 receptor, one of the agonists was shown to promote efficient receptor internalization, which is a process therapeutically favorable for protection against HIV-1 infection.