Specialized lipid domains (rafts) that are generally enriched in sterols and sphingolipids, are most likely present in cell membranes of animals, plants and fungi. While cholesterol and ergosterol are predominant in vertebrates and fungi, plants possess complex sterol profiles, dominated by sitosterol and stigmasterol in Arabidopsis thaliana. Fully hydrated model membranes of composition approaching those found in rafts of mammals, fungi and plants were investigated by means of solid-state 2H-NMR, using deuterated dipalmitoylphosphatidylcholine (2H(62)-DPPC). The dynamics of such membranes was determined through measuring of membrane ordering or disordering properties. The presence of the liquid-ordered, lo, phase, which may be an indicator of rigid sterol-sphingolipid domains, was detected in all binary or ternary mixtures of all sterols investigated. Of great interest, the dynamics of ternary mixtures mimicking rafts in plants (phytosterol/glucosylcerebroside/DPPC), showed a lesser temperature sensitivity to thermal shocks, on comparing to systems mimicking rafts in mammals and fungi. This effect was particularly marked with sitosterol. The presence of an ethyl group branched on the alkyl chain of sitosterol and stigmasterol is proposed as reinforcing the membrane cohesion by additional attractive van der Waals interactions with the alkyl chains of sphingolipids and phospholipids. As a side result, the elevated resolution of NMR spectra in the presence of sitosterol also suggests domains of smaller size than with other sterols. Finally, the role of phytosterols in maintaining plant membranes in a state of dynamics less sensitive to temperature shocks is discussed.