This work has presented a typical example to reveal the great influence of the terminal groups on the self-assembly of hyperbranched polymers. The hyperbranched polymers with hydroxyl terminal groups (HBPO-OH) were hydrophobic and precipitated in water, however, they displayed a pH-responsive self-assembly behavior when the terminal groups were replaced by carboxyl groups. The obtained carboxyl-terminated hyperbranched polymers (HBPO-COOH) existed as unimolecular micelles at high pH (12.21) due to the ionization of carboxyl groups, while the polymers aggregated into multimolecular micelles from 10 to 500 nm with the decrease of pH as a result of the partial protonation of the carboxyl groups. The size of the obtained micelles depended strongly on the solution pH - the lower the pH, the bigger the micelles. TEM, DLS, ATR-FT-IR, (1)H NMR and AFM measurements substantiated that the multimolecular micelles were formed by the secondary aggregation of unimolecular micelles driven by the hydrogen bonding interaction depending on the solution pH.