Interface between platinum(111) and liquid isopropanol (2-propanol): a model for molecular dynamics studies

J Chem Phys. 2007 Feb 21;126(7):074702. doi: 10.1063/1.2472357.

Abstract

A molecular dynamics model and its parametrization procedure are devised and used to study adsorption of isopropanol on platinum(111) (Pt(111)) surface in unsaturated and oversaturated coverages regimes. Static and dynamic properties of the interface between Pt(111) and liquid isopropanol are also investigated. The magnitude of the adsorption energy at unsaturated level increases at higher coverages. At the oversaturated coverage (multilayer adsorption) the adsorption energy reduces, which coincides with findings by Panja et al. in their temperature-programed desorption experiment [Surf. Sci. 395, 248 (1998)]. The density analysis showed a strong packing of molecules at the interface followed by a depletion layer and then by an oscillating density profile up to 3 nm. The distribution of individual atom types showed that the first adsorbed layer forms a hydrophobic methyl "brush." This brush then determines the distributions further from the surface. In the second layer methyl and methine groups are closer to the surface and followed by the hydroxyl groups; the third layer has exactly the inverted distribution. The alternating pattern extends up to about 2 nm from the surface. The orientational structure of molecules as a function of distance of molecules is determined by the atom distribution and surprisingly does not depend on the electrostatic or chemical interactions of isopropanol with the metal surface. However, possible formation of hydrogen bonds in the first layer is notably influenced by these interactions. The surface-adsorbate interactions influence the mobility of isopropanol molecules only in the first layer. Mobility in the higher layers is independent of these interactions.