Background: Dendritic cells (DCs) play a key role as antigen-presenting cells in the immune system. There is growing evidence that the redox equilibrium of these cells influences their ability to induce T-cell activation and to regulate the polarity of the immune response. This could affect the outcome of the immune response during systemic diseases and aging.
Objective: Our aim was to elucidate the mechanism by which the redox equilibrium of antigen-presenting DCs affects the delayed-type hypersensitivity (DTH) response during experimental modification of glutathione levels, as well as during aging.
Methods: We looked at the effect of glutathione depletion by diethyl maleate in DCs as well as during systemic administration on the DTH response to the contact-sensitizing antigens, oxazolone, and 2,4-dinitro-1-fluorobenzene. We also determined whether glutathione repletion with N-acetyl cysteine could influence the decline of the DTH response in aged mice.
Results: Glutathione depletion in bone marrow-derived DCs interfered in their ability to mount a DTH response on adoptive transfer into recipient mice. Glutathione depletion interfered in IL-12 production and costimulatory receptor expression in DCs, leading to decreased IFN-gamma production in the skin of recipient mice. Systemic diethyl maleate treatment exerted similar effects on the DTH response and IFN-gamma production, whereas N-acetyl cysteine administration reversed the decline of the DTH response in aged animals.
Conclusion: Glutathione depletion downregulates T(H)1 immunity through a perturbation of DC maturation and IL-12 production.
Clinical implications: These data show that the induction of oxidative stress in the immune system, under disease conditions and aging, interferes in T(H)1 immunity.