Background: We describe immediate reinitiation of macroreentry ventricular tachycardia (VT) involving the His-Purkinje system by ventricular pacing from the electrode of an implantable cardioverter defibrillator (ICD) as a mechanism of VT storm refractory to ICD therapy.
Methods and results: Repetitive reinitiation of bundle branch reentry tachycardia (BBRT), interfascicular tachycardia, or both VTs by ventricular pacing was identified in four ICD patients presenting with VT storm or incessant VT. All patients had a pre-existing prolonged HV interval (75 +/- 9 ms) and left bundle branch block (LBBB) or bifascicular block during sinus rhythm. The VTs included BBRT with LBBB in three patients and interfascicular tachycardia with right bundle branch block (RBBB) and left anterior or left posterior fascicular block in two patients. The paced beats from the ICD electrode exhibited a LBBB pattern of depolarization in two patients and a RBBB contour in V1 and V2 with left axis deviation in two patients. The QRS complex during pacing from the ICD electrode closely resembled that of the recurrent VT in all four patients suggesting that the pacing site of the ICD electrode was in proximity to the myocardial exit site of the bundle fascicle used for antegrade conduction during the reinitiated VT. Ventricular pacing from the ICD electrode after termination of the VT apparently encountered the retrograde refractoriness of this bundle fascicle and allowed immediate re-propagation of the wavefront orthodromically along the VT circuit. BBRT was eliminated by ablation of the right bundle branch. Successful ablation of the interfascicular tachycardias was achieved by targeting (1) an abnormal potential of the distal left posterior Purkinje network or (2) a diastolic potential during VT in the midinferior left ventricular (LV) septum.
Conclusions: Repetitive reinitiation of BBRT and interfascicular tachycardia by ventricular pacing from the ICD electrode should be considered as a mechanism of VT storm refractory to ICD therapy in patients with a pre-existing conduction delay within the His-Purkinje system.