Background: We analyzed the incidence, risk factors and treatment options for stent fracture after percutaneous pulmonary valve (PPV) implantation (PPVI).
Methods and results: After PPVI, 123 patients had chest x-ray in anteroposterior and lateral projection, echocardiography, and clinical evaluation during structured follow-up. Of these 123 patients, 26 (21.1%) developed stent fracture 0 to 843 days after PPVI (stent fracture-free survival at 1 year, 85.1%; at 2 years, 74.5%; and at 3 years, 69.2%). Stent fracture was classified as type I: no loss of stent integrity (n=17); type II: loss of integrity with restenosis on echocardiography (n=8); and type III: separation of fragments or embolization (n=1). In a multivariate Cox regression, we analyzed various factors, of which 3 were associated with a higher risk of stent fracture: implantation into "native" right ventricular outflow tract (P=0.04), no calcification along the right ventricular outflow tract (judged with fluoroscopy, P=0.02), recoil of PPV (qualitatively, PPV diameter in frontal or lateral plane with fully inflated balloon > diameter after balloon deflation, P=0.03). Substernal PPV location, high-pressure post-PPVI dilatation of PPV, pre-PPVI right ventricular outflow tract gradients, and other indicators of PPV compression or asymmetry did not pose increased risk. Patients with type I fracture remain under follow-up. Patients with type II fracture had 2nd PPVI or are awaiting such procedure, and 1 patient with type III fracture required surgical explantation.
Conclusions: Stent fracture after PPVI can be managed effectively by risk stratification, systematic classification, and anticipatory management strategies. Serial x-ray and echocardiography are recommended for surveillance.