Polymorphisms within genes responsible for estrogen catabolism could alter cellular levels of genotoxic 4-hydroxylated catechol estrogens and antiangiogenic 2-methoxyestradiol, thus influencing risk of developing ovarian cancer. We carried out a population-based case-control study of 310 epithelial ovarian cancer cases and 585 controls in African-American and Caucasian women ages 35 to 54 years from Seattle, Atlanta, and Detroit metropolitan areas. Subjects were interviewed and genotyped for CYP1A1 m1, m2, m3, and m4; CYP1B1 Arg(48)Gly, Ala(119)Ser, Val(432)Leu, and Asn(453)Ser; COMT Val(158)Met; UGT1A1 A(TA)nTAA; and SULT1A1 Arg(213)His polymorphisms. Unconditional logistic regression was used to calculate odds ratios (OR). Haplotypes were inferred and analyzed using models based on expectation-maximization with progressive ligation and Bayesian coalescence theory. CYP1B1 Leu(432) carriers were at increased risk of ovarian cancer, with an adjusted OR of 1.5 (95% confidence interval, 1.1-2.3) compared with Val(432) homozygotes. The most common CYP1B1 haplotype was Arg(48)-Ala(119)-Val(432)-Asn(453). All other haplotypes with frequencies >5% contained the Leu(432) allele. In diplotype analyses, relative to women homozygous for Arg(48)-Ala(119)-Val(432)-Asn(453), women with diplotypes containing at least one Leu(432) allele had adjusted ORs ranging from 1.3 to 2.2. Among women homozygous for COMT Met(158), carriers of CYP1B1 Leu(432) had a 2.6-fold increase in risk relative to CYP1B1 Val(432) homozygotes (95% confidence interval, 1.1-5.9). This latter result is opposite in direction from a similar analysis conducted by other investigators in a different study population. No association of ovarian cancer risk was observed with any of the other polymorphisms examined, either alone or in combination.