Both exposure duration and concentration determine the lethal consequences of polycyclic aromatic hydrocarbons (PAHs) released during oil spills. Many factors, such as weathering, tidal transport, and addition of surfactants, can change the composition of individual dissolved compounds and the duration over which an individual is exposed. Conventional toxicity testing methods produce effect metrics, such as the median lethal concentration (LC50), that are not applicable to predicting mortality at all toxicant exposure durations that are likely to occur during a spill. In the present study, survival time models were developed that explicitly include toxicant exposure duration and concentration to predict time-to-death for grass shrimp (Palaemonetes pugio) exposed to three PAHs (1-ethylnaphthalene, 2,6-dimethylnaphthalene, and phenanthrene) commonly found in the water-soluble fraction derived from oil. Conventional 48-h LC50s also were calculated for the compounds (ethylnaphthalene, 295 microg/L; dimethylnaphthalene, 500 microg/L; and phenanthrene, 360 microg/L). In contrast to LC50s, survival models and associated response surfaces can be used to predict the proportions of shrimp that will die at various times throughout the exposure period.