The photocatalytic disinfection of pathogenic bacteria in water was investigated systematically with AgI/TiO2 under visible light (lambda > 420 nm) irradiation. The catalyst was found to be highly effective in killing Escherichia coli and Staphylococcus aureus. The adsorbed *OH and hVB+ on the surface of the catalyst were proposed to be the main active oxygen species by study of electron spin resonance and the effect of radical scavengers. The process of destruction of the cell wall and the cell membrane was verified by TEM, potassium ion leakage, lipid peroxidation, and FT-IR measurements. Some products from photocatalytic degradation of bacteria such as aldehydes, ketones, and carboxylic acids were identified by FT-IR spectroscopy. These results suggested that the photocatalytic degradation of the cell structure caused the cell death. The electrostatic force interaction of the bacteria-catalyst significantly affected the efficiency of disinfection on the basis of the E. coli inactivation under different conditions.