A multimodality instrument that integrated optical or near-infrared spectroscopy into a magnetic resonance imaging (MRI) breast coil was used to perform a pilot study of image-guided spectroscopy on cancerous breast tissue. These results are believed to be the first multiwavelength spectroscopic images of breast cancer using MRI-guided constraints, and they show the cancer tumor to have high hemoglobin and water values, decreased oxygen saturation, and increased subcellular granularity. The use of frequency-domain diffuse tomography methods at many wavelengths provides the spectroscopy required for recovering maps of absorbers and scattering spectra, but the integration with MRI allows these data to be recovered on an image field that preserves high resolution and fuses the two data sets together. Integration of molecular spectroscopy into standard clinical MRI can be achieved with this approach to spectral tomography.