Erythropoietin, a hypoxia-regulated factor, elicits a pro-angiogenic program in human mesenchymal stem cells

Exp Hematol. 2007 Apr;35(4):640-52. doi: 10.1016/j.exphem.2007.01.044.

Abstract

Objective: The ability of erythropoietin (EPO) to elicit a pro-angiogenic effect on human mesenchymal stem cells (hMSC) was tested. hMSC are currently under study as therapeutic delivery agents that target tumor vessels. Hypoxia favors the differentiation of hMSC towards a pro-angiogenic program. However, the classical angiogenic factors, vascular endothelial growth factor and basic fibroblast growth factor, are not fully capable of restoring this effect. The hypoxia-regulated factor, EPO, induces angiogenesis in endothelial cells. Here, EPO's pro-angiogenic effect on hMSC was analyzed.

Methods: hMSC were tested for EPO receptor expression by western blot, immunofluorescence, and flow cytometry assays. Downstream receptor signaling components JAK and STAT were measured by standard assays. Pro-angiogenesis effects mediated by EPO treatment of hMSC were measured by proliferation, cytokine, or pro-angiogenesis factor secretion, metalloprotease activation, migration, invasion, wound healing, and tubule formation assays.

Results: hMSC express the cognate EPO receptor and are capable of promoting angiogenesis following EPO treatment in all the angiogenesis assays tested. EPO-treated hMSC proliferate and secrete pro-angiogenesis factors more readily than untreated hMSC. EPO leads to increased hMSC chemotaxis, migration, and activation of matrix metalloprotease-2. This treatment causes greater recruitment of vessels as measured in an in vivo angiogenesis assay.

Conclusion: EPO is capable of eliciting a pro-angiogenesis program in hMSC that instigates secretion of angiogenic factors and the subsequent recruitment of endothelium. This study defines a novel mechanism for tumor cell recruitment of blood vessels that is important to consider in the design of stem cell-based therapies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blotting, Western
  • Cells, Cultured
  • Erythropoietin / pharmacology*
  • Flow Cytometry
  • Fluorescent Antibody Technique
  • Humans
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / drug effects*
  • Mesenchymal Stem Cells / metabolism
  • Neovascularization, Physiologic*
  • Receptors, Erythropoietin / metabolism

Substances

  • Receptors, Erythropoietin
  • Erythropoietin