Room temperature phosphorescence of alpha-bromonaphthalene induced by cyclodextrin in the presence of hexahydropyridine or 1-ethylpiperidine and its application

Anal Chim Acta. 2007 Feb 5;583(2):364-9. doi: 10.1016/j.aca.2006.10.055. Epub 2006 Nov 9.

Abstract

Two novel heterocyclic third components, hexahydropyridine (HHP) and 1-ethylpiperidine (EP) were firstly found to enhance room temperature phosphorescence (RTP) of alpha-bromonaphthalene (alpha-BrN) induced by cyclodextrin. The effects of equilibrium time for formation of inclusion complex, temperature, pH values and the variation of concentrations of each component on RTP of alpha-BrN and the RTP lifetime of each ternary complex had been investigated and compared to discuss inclusion mechanism of ternary complexes. The RTP lifetimes of alpha-BrN/beta-CD/HHP, alpha-BrN/beta-CD/cyclohexane (CH) and alpha-BrN/beta-CD/EP were 6.18, 7.71 and 9.36 ms, respectively. Based on the strongest RTP of alpha-BrN induced by CD in the presence of EP, a method for determination of EP was established. Under the optimal conditions, the analytical curve of EP gave a liner dynamic range of 1.50x10(-4) to 1.50x10(-3) mol L(-1) with a detection limit of 4.8x10(-5) mol L(-1). When the established CD-RTP method was applied to determine the concentration of EP synthetic samples in distilled water, the experimental results demonstrated that the recovery was 91.4% with a relative standard deviation less than 2.85% (n=7).

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cyclodextrins / analysis*
  • Luminescent Measurements / methods*
  • Naphthalenes / analysis*
  • Piperidines / analysis*
  • Pyridines / analysis
  • Temperature*

Substances

  • Cyclodextrins
  • Naphthalenes
  • Piperidines
  • Pyridines
  • 1-ethylpiperidine
  • alpha-bromonaphthalene