Blood coagulation factor V circulates as a procofactor with little or no procoagulant activity. It is activated to factor Va by thrombin following proteolytic removal of a large central B-domain. Although this reaction is well studied, the mechanism by which bond cleavage and B-domain release facilitate the transition to the active cofactor state has not been defined. Here we show that deletion or substitution of specific B-domain sequences drives the expression of procoagulant function without the need for proteolytic processing. Conversion to the constitutively active cofactor state is related, at least in part, to a cluster of amino acids that is highly basic and well conserved across the vertebrate lineage. Our findings demonstrate that discrete sequences in the B-domain serve to stabilize the inactive procofactor state, with proteolysis primarily functioning to remove these inhibitory constraints. These unexpected results provide new insight into the mechanism of factor V activation.