Background: Dermoscopy is a useful tool for dermatologists to study melanocytic lesions. Its possible usefulness in the assessment of capillary nailfold morphological changes (capillaroscopy) has recently been advocated.
Objectives: To assess the practical utility of digital epiluminescence microscopy as a capillaroscopic instrument in patients with Raynaud phenomenon (RP). To compare the sensitivity and specificity rates obtained by epiluminescence microscopy with those previously reported with conventional capillaroscopic devices.
Methods: Fifty-six consecutive patients with primary RP (PRP; n = 5) or secondary RP (SRP; n = 51) (11 men and 45 women in total) were included in the study. A control group of 10 healthy subjects was also evaluated. Twenty-six patients (46%) had systemic sclerosis (SS), 12 (21%) presystemic sclerosis (pre-SS), one (2%) dermatopolymyositis-SS, one (2%) mixed connective tissue disease, two (4%) Sjögren syndrome, two (4%) an overlap syndrome, one (2%) rheumatoid arthritis and six (11%) other connective tissue diseases. Capillary nailfold changes were studied using a nonportable digital epiluminescence device (magnification x 30). Following a systematized protocol, capillary nailfold morphology, density and distribution were evaluated. Several capillaroscopic patterns were identified (normal, sclerodermic, nonspecific, nondiagnostic) as previously defined. A possible relationship between capillary nailfold changes and the intensity of RP or the presence of associated autoimmune diseases was assessed.
Results: The sclerodermic pattern showed a sensitivity of 76.9% and a specificity of 90.9% in SS. A typical capillaroscopic SS pattern was observed in 73% of cases of limited SS and in 82% of cases of diffuse SS. Patients with Sjögren syndrome and dermatopolymyositis-SS showed a nonspecific capillaroscopic pattern. All patients with PRP presented a normal capillaroscopic pattern. A normal capillaroscopic pattern was also observed in 11 of 12 patients with pre-SS. In one of two patients presenting severe sclerodactyly and in all patients showing hand oedema (three of 56), capillaroscopic changes could not be evaluated. Avascular areas correlated significantly with severe RP (P < 0.002), bone resorption (P < 0.007) and diffuse SS (P < 0.008).
Conclusions: Digital epiluminescence seems to be a useful and reliable technique in the evaluation of capillary nailfold morphological changes. This technical variation allows the identification of specific capillaroscopic patterns associated with connective tissue diseases. It also permits us to differentiate PRP from SRP. The results obtained with this technique are similar to those previously reported using standard capillaroscopy devices.