Lycopene from heat-induced cis-isomer-rich tomato sauce is more bioavailable than from all-trans-rich tomato sauce in human subjects

Br J Nutr. 2007 Jul;98(1):140-6. doi: 10.1017/S0007114507685201. Epub 2007 Mar 29.

Abstract

Lycopene is present mainly as cis-isomers in human serum and tissues whereas all-trans-lycopene predominates in tomato products, suggesting that all-trans-lycopene is isomerised in the body or is less bioavailable. The objectives of the present study were to develop processing conditions for tomatoes to obtain products with different cis-trans-lycopene isomer distribution and to assess their bioavailability. Healthy adult subjects (n 12) were recruited for this randomised cross-over trial. Each intervention was preceded by a 2-week washout period. Two tomato sauces, one rich in all-trans-lycopene (32.5 mg total lycopene/100 g sauce; 5 % cis-isomers), the other high in cis-lycopene (26.4 mg total lycopene/100 g sauce; 45 % cis-isomers), were produced by different heat-processing techniques. Each sauce (150 g) was served in a standardised meal at 08.00 hours after overnight fasting. Plasma TAG-rich lipoprotein fractions over 9.5 h following test-meal consumption as a measure of lycopene absorption were obtained and expressed as baseline-corrected area under the concentration v. time curves (AUC), using HPLC-electrochemical detection. AUC values adjusted for the amount lycopene consumed showed that total, total cis-, and all-trans-lycopene responses were significantly higher from the cis-isomer-rich sauce, compared with the all-trans-rich sauce, being 7.30 (sem 1.45) v. 4.74 (sem 1.08) nmol x h/l (P = 0.002), 3.80 (sem 0.76) v. 1.98 (sem 0.37) nmol x h/l (P = 0.0005) and 3.50 (sem 0.76) v. 2.76 (sem 0.76) nmol x h/l (P = 0.01), respectively. The present study demonstrates significant lycopene bioavailability from cis-lycopene-rich tomato sauce and highlights the importance of considering isomer-distribution for lycopene bioavailability. Furthermore, processing parameters can be controlled to alter isomer patterns of tomato products and influence lycopene bioavailability.

Publication types

  • Randomized Controlled Trial
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Anticarcinogenic Agents / administration & dosage
  • Anticarcinogenic Agents / blood
  • Anticarcinogenic Agents / pharmacokinetics*
  • Area Under Curve
  • Biological Availability
  • Carotenoids / administration & dosage
  • Carotenoids / blood
  • Carotenoids / pharmacokinetics*
  • Cholesterol / blood
  • Condiments*
  • Cross-Over Studies
  • Female
  • Food Handling / methods*
  • Hot Temperature
  • Humans
  • Intestinal Absorption / physiology
  • Isomerism
  • Lipoproteins / blood
  • Lycopene
  • Male
  • Postprandial Period / physiology
  • Solanum lycopersicum / chemistry*
  • Triglycerides / blood

Substances

  • Anticarcinogenic Agents
  • Lipoproteins
  • Triglycerides
  • Carotenoids
  • Cholesterol
  • Lycopene