Discovery of a novel small molecule binding site of human survivin

Bioorg Med Chem Lett. 2007 Jun 1;17(11):3122-9. doi: 10.1016/j.bmcl.2007.03.042. Epub 2007 Mar 16.

Abstract

Survivin is one of the most tumor-specific genes in the human genome and is an attractive target for cancer therapy. However, small-molecule ligands for survivin have not yet been described. Thus, an interrogation of survivin which could potentially both validate a small-molecule therapy approach, and determine the biochemical nature of any of survivin's functions has not been possible. Here we describe the discovery and characterization of a small molecule binding site on the survivin surface distinct from the Smac peptide-binding site. The new site is located at the dimer interface and exhibits many of the features of highly druggable, biologically relevant protein binding sites. A variety of small hydrophobic compounds were found that bind with moderate affinity to this binding site, from which one lead was developed into a group of compounds with nanomolar affinity. Additionally, a subset of these compounds are adequately water-soluble and cell-permeable. Thus, the structural studies and small molecules described here provide tools that can be used to probe the biochemical role(s) of survivin, and may ultimately serve as a basis for the development of small molecule therapeutics acting via direct or allosteric disruption of binding events related to this poorly understood target.

MeSH terms

  • Binding Sites
  • Crystallography, X-Ray
  • Cysteine Proteinase Inhibitors / chemistry*
  • Dimerization
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Inhibitor of Apoptosis Proteins
  • Ligands
  • Microtubule-Associated Proteins / chemistry*
  • Molecular Probes / chemistry*
  • Neoplasm Proteins / chemistry*
  • Protein Conformation
  • Survivin

Substances

  • BIRC5 protein, human
  • Cysteine Proteinase Inhibitors
  • Inhibitor of Apoptosis Proteins
  • Ligands
  • Microtubule-Associated Proteins
  • Molecular Probes
  • Neoplasm Proteins
  • Survivin