Several lines of evidence indicate that, together with deregulated growth, alteration of apoptosis plays a pivotal role in tumorigenesis. PUMA, a pro-apoptotic member of Bcl-2 family, mediates p53-dependent and -independent apoptosis. BAD is also a pro-apoptotic Bcl-2 family member and phosphorylation of BAD protein inhibits the pro-apoptosis function of BAD. To see whether the alteration of protein expressions of PUMA and phospho-BAD (p-BAD) are characteristics of human colorectal cancers, we analyzed the expression of these proteins in 103 colorectal carcinomas by immunohistochemistry. Also, we analyzed the mutation of the Bcl-2 homology 3 (BH3) domain of PUMA gene, an important domain in the apoptosis function of PUMA, by single-strand conformation polymorphism (SSCP) in 98 colorectal carcinomas. p-BAD immunostaining was detected in 62 cases (60.1%) of the 103 carcinomas, whereas it was not detected in the normal colonic mucosal epithelial cells. PUMA protein expression was detected in both cancer cells and normal mucosal cells in all of the 103 cases. However, the cancer cells showed higher intensities of PUMA immunostaining than the normal cells of the same patients in 50.4% of the cases. There was no association of the p-BAD expression with the PUMA expression. The mutational analysis revealed no PUMA BH3 domain mutation in the cancers. Our data indicated that expressions of both PUMA and p-BAD were increased in the colorectal cancer cells, and suggested that the increased expression of these proteins in malignant colorectal epithelial cells compared to the normal mucosal epithelial cells may possibly alter the cell death regulation during colorectal tumorigenesis.