Objective: Interleukin-21 (IL-21) is a T cell-derived cytokine that modulates T cell, B cell, and natural killer cell responses. In this study, the effects of blocking IL-21 were examined in 2 rodent models of rheumatoid arthritis (RA) to determine whether IL-21 contributes to their pathologic processes.
Methods: DBA/1 mice were immunized with bovine type II collagen and then treated with murine IL-21 receptor Fc fusion protein (IL-21R.Fc), which was initiated after the onset of arthritis symptoms in 10% of the cohort. The mice were assessed 3 times per week for signs of disease, including histologic features as well as serum cytokine, Ig, and cytokine messenger RNA (mRNA) levels in the paws. In a separate experiment, Lewis rats were immunized with Freund's complete adjuvant followed by administration of IL-21R.Fc at the peak of inflammation in the joints. Rats were assessed daily for histologic features and for scoring of arthritis severity. In addition, the effects of IL-21R.Fc on the production of interferon-gamma (IFNgamma) by T cells were examined.
Results: Treatment of DBA/1 mice with IL-21R.Fc reduced the clinical and histologic signs of collagen-induced arthritis. Nonspecific IgG1 levels were decreased in response to treatment. The levels of IL-6 mRNA in the paws and the serum IL-6 levels were decreased after treatment with IL-21R.Fc. IFNgamma mRNA levels were increased in the paws, and the addition of IL-21R.Fc to collagen-activated lymph node cultures enhanced the levels of IFNgamma. Collagen-specific spleen cell responses in IL-21R.Fc-treated mice were observed as reduced levels of IFNgamma and increased levels of IL-6. Treatment of Lewis rats with IL-21R.Fc after induction of adjuvant-induced arthritis resulted in reversal of disease signs and improvements in histologic parameters.
Conclusion: These findings demonstrate a pathogenic role for IL-21 in animal models of RA, and support consideration of IL-21 as a therapeutic target in human RA.