Two different hepatoma cell lines were incubated for 48h with chemotherapeutic drugs cisplatin, paclitaxel and 5-FU to determine their ability to induce cytotoxicity and DNA fragmentation as well as to modify the expression of some cell death-related genes that could be involved in the resistance to therapy. We observed that cisplatin and paclitaxel induced cytotoxicity, but significant differences between both cell lines, were found only in the case of paclitaxel. At 48h, apoptosis was clearly present in Hep3B cells treated with cisplatin and HepG2 cells treated with paclitaxel. 5-FU induced cytotoxicity in both cell lines but only at higher concentrations than the other two drugs, triggering apoptosis and necrosis in HepG2 cells and only necrosis in Hep3B. When a time course was performed for the first 8h of treatment to elucidate the initial mechanism of cell death responsible for DNA fragmentation, we observed that 5-FU in Hep3B, and cisplatin in both cell lines, induces primary necrosis, whereas at the concentration tested here, paclitaxel clearly triggers apoptosis in both cell lines. HepG2 cells were weakly sensitive to 5-FU in the first 8h of treatment, so the primary mechanism of cell death was not clear, but results seem to indicate that it could be apoptosis. At 48h, Bax was not up-regulated with any of the treatments, whereas cisplatin was able to induce Bcl-xL down-regulation in both cell lines. Treatment with 5-FU also down-regulated Bcl-xL in HepG2 cells. We also measured variations in the expression of survivin, an inhibitor of apoptosis that has also been involved in mitototic catastrophe. Hep3B cells seem to show an increase in protein levels with all treatments. Exposure to paclitaxel resulted in the highest effect. In the case of HepG2 cells, there was a decrease in survivin expression when cells were treated with 5FU and paclitaxel, both treatments showing complete loss of the protein. Using an antibody that recognizes unprocessed caspase-3, we observed that the enzyme was assumingly activated in HepG2 cells treated with 5FU and paclitaxel, but only weakly after treatment with cisplatin. Hep3B cells did not show activation since the levels of the pro-enzyme remained the same as that in the control. In conclusion, the three drugs tested in this study could induce cell death, with paclitaxel being more effective inducing apoptosis. 5FU was only effective at high doses and its mechanism seems to be primarily related to necrosis in Hep3B and probably apoptosis in HepG2. Cisplatin mechanism of cell death is probably mediated by the decrease in anti-apoptotic protein Bcl-xL whereas paclitaxel and 5FU are decreasing the apoptosis inhibitor survivin. According to pro-enzyme levels, caspase-3 was only activated in HepG2 cells, whereas in the case of Hep3B cells the mechanisms of toxicity appear to be caspase-3-independent at the time and concentrations tested in this study. The resistance of Hep3B cells to death induced by chemotherapy could be related to an increase in the expression of IAP survivin, which can decrease cell response to the treatment or even switch the type of death from apoptosis to another kind, making therapy less efficient.