GW bodies, also known as mammalian P-bodies, are cytoplasmic foci involved in the post-transcriptional regulation of eukaryotic gene expression. Recently, GW bodies have been linked to RNA interference and demonstrated to be important for short-interfering-RNA- and microRNA-mediated mRNA decay and translational repression. Evidence indicates that both passenger and guide strands of short-interfering RNA duplexes can localize to GW bodies, thereby indicating that RNA-induced silencing complexes may be activated within these cytoplasmic centers. Formation of GW bodies appears to depend on both specific protein factors and RNA, in particular, microRNA. Work over the past few years has significantly increased our understanding of the biology of GW bodies, revealing that they are specialized cell components that spatially regulate mRNA turnover in various biological processes. The formation of GW bodies appears to depend on both specific protein factors and RNA, in particular, microRNA. Here, we propose a working model for GW body assembly in terms of its relationship to RNA interference. In this process, one or more heteromeric protein complexes accumulate in successive steps into larger ribonucleoprotein structures.