Leaf exchange is an abrupt phenological event that drastically modifies the morphology and physiology of the aerial portion of the plant. We examined if water and osmolyte differences between old leaves and new organs trigger leaf exchange, and whether the differences are closely linked to the resource resorption process in senescing leaves. We monitored concentrations of osmolyte, water, non-structural carbohydrate, nitrogen and potassium in senescing leaves and in emerging new leaves and inflorescences of a Mediterranean leaf exchanger (Cistus laurifolius L.) growing in NE Spain. Old leaves rehydrated markedly during most of the senescence process, which co-occurred with the extension of new shoots, suggesting the lack of a clear-cut switch in water supply from old to new organs. The accumulation of osmolytes in the early stage of leaf senescence might account for this rehydration. Osmolyte dynamics in old leaves depended largely on the progression of resource resorption from senescing organs but were mostly unrelated to water content during late senescence. We conclude that dehydration of old leaves is not a prerequisite for the triggering of leaf exchange. The finding that most nutrients and carbohydrates accumulated in new organs before senescing leaves massively exported resources, and the absence of relevant differences between the dynamics of old leaves at the base of inflorescences and those at the base of vegetative shoots, indicate that the nutrient and carbohydrate demands of new organs do not trigger leaf exchange.